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Abstract-System  identification,  that is, the modeling  and  identifica- 
tion  of  a  system  from  knowledge of its  input  and  output signals, is  a 
subject  that is of  considerable  importance  in  many  areas  of signal and 
data processing. Because of  the  diversity of applications,  a  number  of 
different  methods  for system  identification  with  different advantages 
and disadvantages have  been  described  and  used in the  literature. In 
this  paper  we investigate the  performance  of three well-known  system 
identification  methods based on an FIR (finite  impulse  response)  model 
of the  system.  The  methods will be  referred to in  this  paper as the  least 
squares analysis (LSA) method,  the  least  mean  squares  adaptation algo- 
rithm (LMS), and the short-time  spectral  analysis (SSA) procedure. 

Our  particular  interest in this paper  concerns  the  performance of 
these  algorithms in the  presence of  high noise levels and  in  situations 
where the  input signal may be  band-limited.  Both  white  and  nonwhite 
random  noise signals as well as speech signals are used  as  test signals to 
measure the  performance  of  each of the  system  identification  tech- 
niques as a  function of the signal-to-noise ratio of the  systems  output. 
Quantitative  results in terms  of  an  accuracy  measure  of  system  identifi- 
cation  are  presented  and  a simple analytical  model  is  used to explain 
the  measured  results. 

T 
I. INTRODUCTION 

HE AREA of system identification is one  of  the  most 
important areas in engineering because of  its applicability 

to  a wide range of  problems [ 11 -[6]. As such,  a great deal of 
research  has  been carried out in studying  the  properties  of  a 
wide variety of algorithms for performing  system identification 
[4]-[6]. As a result, system identification techniques are 
generally  well known  and  understood  for  a wide variety of 
applications. The  purpose  of this paper is to compare  and  con- 
trast the  performance  of three system identification tech- 
niques for a class of signals which is characteristic of  those 
obtained  from  speech waveform coders [ l l]  . Our intended 
application is to be  able to characterize  a digital waveform 
coder in terms  of  a  time-varying, linear system  (correlated 
signal component),  and an additive uncorrelated noise compo- 
nent, in order to make  meaningful objective evaluations  of 
such  coders.  In this paper,  however, we will restrict our  atten- 
tion to aspects  of  the  system identification problem. Some 
results on speech waveform coder  characterization are  given in 

Fig. 1 shows the  conventional  system identification model. 
The input signal is x(n)  and  the output signal is y(n). The 

P O I .  
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Fig. 1. Block diagram  of  the linear system  model used for  system 
identification. 

output is modeled as  having been  obtained via linear filtering 
of the  input, followed by  the  addition of  an uncorrelated 
white noise  signal e(n), i.e., 

y (n) = x (n) * h (n)  + e(n) (1) 

(2) = h(m)x(n - m) + e @ )  
M -  1 

m=o 

with 

e(n) x(n)  = e(n) u(n) = 0 (3) 

e(n) e(n - m) = u,26 (m). (4) 

It is tacitly assumed in (2) that  the impulse  response  of  the 
linear system h(n), is of finite duration (A4 samples) or can  be 
effectively modeled  with  a finite impulse  response  system. 

The particular class of input signals in which we  are inter- 
ested  has  the  following properties. 

1) The noise  level e(n) at  the  output  of  the linear system is 
fairly large-i.e., we are interested in systems  with signal-to- 
noise ratios in the range of 0-24 dB. 

2) The input signal x(n)  is generally band-limited and has  a 
distinct spectral slope. For speech codingx(n) is usually  band- 
limited to  about 3 kHz,  and sampled at rates from about 
8 kHz to  16 kHz.  Furthermore,  the  spectrum  of  speech is 
highly nonuniform  and falls rapidly  for  frequencies above 
about 2 kHz. Also, for voiced speech  the  spectrum is a line 
spectrum  containing significant energy  only in a set of har- 
monics  of  the  pitch  period. Between harmonics  the  spectrum 
often falls  as much as 20-40 dB. 

3) The system h(n) is generally  time-varying  and, in addi- 
tion,  it  may be  nonlinear.  The  time-varying  nature  of h(n) is 
due to  the  nonstationarity of a  speech signal  (especially the 
signal  level) which causes the  operating region of  speech  coders 
to vary  from  slope  overload to granularity  with  different talk- 
ers, transmission  media,  etc. As such the linear system char- 
acterization of  the  coder  must  adapt  with  time. 
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4) The duration of the impulse response, M ,  is generally 
unknown and could be relatively long in some cases. 

Because of the importance of understanding both  the limita- 
tions and advantages of the available system identification 
techniques, a study was performed on an artificially created 
signal with  a  known linear system and in a known noise back- 
ground. The purpose of  the simulation study was to measure 
the linear system estimation error as a  function of the 
following: 

1) Duration of the signal used to make the estimate, N; 
2) Assumed duration of the linear system impulse response, 

3) Signal-to-noise ratio of the system, S/N, where 
fi; 

where u: is the variance of  the signal u(n) and uz is the vari- 
ance of  the noise e(n) (see Fig. 1); 

4) Type of unknown system to be identified, h(n); 
5 )  Input signal characteristics-i.e., the bandwidth of the 

input signal, its spectral shape, etc. 
In order to quantify  the ideas to be presented here, an ana- 

lytical measure of the accuracy of estimation is used which 
has the form’ 

1 

where &(n) is the estimated linear system and M is its assumed 
length. This measure is the log of the normalized norm of the 
“misadjustment” or “misalignment” vectors, referred to, re- 
spectively, in [5] and [ 6 ] ,  expressed in  dB. It is shown that 
for white input signals, the measure of (6) provides a good 
description of the performance of a system identification 
method. For nonwhite input signals, a modified accuracy 
measure Q’ is developed whose properties are analogous to 
those of the Q measure. Both analytical and measured curves 
of Q (and Q’ yhen appropriate), as a function of the system 
parameters N ,  M7 S/N and h(n), are presented. 

The organization of this paper is  as follows. In Section I1  we 
review the three system identification methods which were 
used in  this study and explain why they were chosen for the 
intended  application. In Section I11 we present both analytical 
and experimentally  obtained results of the performance of  the 
three system identification methods on the artificially created 
signals. In Section IV we expand the results to include  actual 
speech inputs as well as band-limited noise. Finally, in Sec- 
tion  V we compare and contrast the three  methods and high- 
light the possible advantages and disadvantages of each 
algorithm. 

A 

‘Throughout  this p2per we are assuming M > M ,  Le., a valid estimate 
* 

of M is available  and M is at least as  large as this estimate. 

11. SYSTEM IDENTIFICATION METHODS 
The three system identification methods used in  this  study 

were the classical least squares analysis (LSA), the least squares 
adaptation algorithm (LMS), and  a  short-time spectral analysis 
(SSA) procedure. The reasons these three particular methods 
were chosen were because of their applicability to a wide range 
of problems (especially in  the area of speech processing [4] , 
[6 ]  , [8] , [9] , [ 121 , [ 131) and the fact that each of these 
methods had distinct advantages in certain situations. For ex- 
ample,  the least squares analysis algorithm is a simple time- 
domain method for estimating a linear system from a block of 
data using efficient recursion methods to solve a  matrix  equa- 
tion. Methods similar to this have found wide use  in speech 
processing [12] . The least mean squares adaptation algorithm 
is a sample-by-sample adaptive method for recursively updating 
linear system estimates and is especially useful for efficiently 
estimating linear, slowly time-varying systems of large order 
[8]. It  has been particularly useful for applications such as 
adaptive echo cancelers, adaptive line equalizers, etc. Spectral 
estimation methods  attempt to identify the linear system from 
short-time spectral data, rather  than  from time-domain solu- 
tions. Potentially such methods have the capability of estimat- 
ing high-order systems (i.e., systems with long impulse re- 
sponses) without  the need for recursive matrix inversions or 
successive update  methods when the analysis is implemented 
using FFT techniques. Also, with the advent of high-speed 
inexpensive FFT chips (implemented in CCD technology), the 
potential  low  cost of such analysis methods makes them 
attractive. 

In this section we review the specific algorithms implemented 
for this study.  For completeness, we  begin by describing the 
classical least squares analysis, followed by  the least mean 
squares adaptation algorithm. We then describe the spectral 
estimation method. 

A .  Least Squares Analysis (LSA) 
Based on the model of Fig. 1 we  assume that  the  output y ( n )  

is related to  the  input x(n)  exactly by (1) and (2) where M is 
the  true duration of  the impulse response h(n). For  the least 
squares method we assume that h(n), e(n), and M are  all 
unknown, and we  wish to make an opcmal estimate, h^(n), of 
h(n). The assumed duration of &(n) is M samples. 

For LSA we form the estimate 

y(n)= 2 k(m)x(n  - rn)+&(n) 
M -  1 

(7) 
m =o 

or 

2(n) = y (n)  - 2 k(m) x (n - m). 
M -  1 

m =o 

The optimization  criterion is to minimize the norm of 2(n) 
over the set of coefficients of h^(n), i.e., 

(9) 
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where N is the  frame of samples of x(n)  and y(n) used in the  squares  solution  of (13). Assuming that ki is an estimate  of 
system  estimate.  The  solution to (9) is a classical one,  ob- f at  the  ith  iteration,  the  new  estimate hi+l is determined as 
tainednby differentiating (9) with  respect to &(k), k = 0, 1,2 ,  
. * , M -  1 ,  and setting the result to 0, leading to the set of 

equations where V i  is the gradient of lle^(n)1I2 with  respect to 8 and u is a 
constant. Basically - V i  determines the  direction in which the 

&(m) 2 x(n - k ) x ( n  - m)= y ( n ) x ( n  - k)  correction is made for  the i t i iteration  and u is a  constant 
m = o  n = o  n =o which  controls  the size of  the  step  taken in that  direction. 

Since I12(n)llz is a quadratic  function  of &,.is a single minimum 
’ lii (lo) exists in the  error  surface  and  it can be  shown (for the  sampled 

or by defining  data case) that  the algorithm converges to this minimum (1 7) 
if 

6xx(k, m )  = x(n  - k)x (n  - m )  (1 1) u < l/(&& (2 1) 

i.e., if the  step size  is not  too large, where u i  is the  variance  of 
N-l  x(n)  (assuming zero  mean) [4]. Generally,  a  much smaller 

(12) value of u is chosen  and  frequently u is modified as the error 

the  solution is compactly  written as By differentiating (16) with  respect to f ;  and  applying defini- 

= f ; j -  uvi (20) 

lii- 1 N-1  N-1 

= O’ ” 27 * * 

N-1 

n =o 

6XJW = y(n>x(n - k)  
n = o  

decreases. 

&- 1 tions (2), (3), (1 l), and (12), the  gradient V at  the  ith  step can 

= -2Tx,,(h - f;). (22) 

h(m) m )  = 6xy(k) k = 0, 1 ,  * * - ,&- 1 .  (13) be shown to  be [4],  [5] 
m = o  a ll2(n)1I2 

af ;  The  set  of equations given  above  is efficiently solved  via a 
recursive procedure  known as the Cholesky decomposition 
[ 121 . Equation (13) is sometimes referred to as the discrete with  the aid of (21, (31, (7), and (11)  the gradient of  a  singe 
Weiner-Hopf equation [ 141 . coefficient h(m) can be  determined as [4], [5] 

squares  solution to the  system identification problem we gain = -2E[x(n - m )  2(n>l (23) 
some  new insights into  the  solution. If  we let 

= 

If we adopt  a  matrix  notation  to solve for  the classical least 

where E [  ] denotes  the  expected  value  (ensemble average  over 
(14) random  input). 

hf = [&(O), &1), - . , &(fG - 1)1 (1 5 )  The LMS adaptation  algorithm  frequently  uses as an  estimate 

ll2(n)Il2 = (8 - 6;$&Jt 6xx(h - 6;AFxy)  +v% 

of (23) the gradient  of  a single error 
then I12(n)l12 can be expressed as 

alla(n)l12 E - 2 4  - m) a(n) 
&(m) (24) 

- G y  $ 2  6 x y .  (16) where 2(n) is determined  from (8). New estimates o f f ;  are 

This form clearly shows  the  quadratic  nature  of the problem then  computed on a  sample-by-sample basis  as data samples 
and it is easily  seen that  to minimize I12(n)l12 with  respect to x(n)  and Y(n)  become available. The  new  estimate of  the  mth 
f;, f ;  must be coefficient off;  is then  computed as 

h ^ = $ - l $  
xx xy (17) $n+l(m)=hn(m)  t 2ux(n - m)Z(n).  (25) 

giving for  the  minimum residual, Since the  choice  of u depends on  the  variance  of x(n)  as 
shown by (21), we used in this work  a  self-normalizing  form 

(18) of  the LMS adaptation  algorithm, 
N-1 ici-1 

= y2(n) - $(m) y(n)x(n  - m).   &n+l(m)=&n(m) + K x ( n  - rn)e(n)/(u$) (26) 
n =o m =o  n =0 where 

(1 9) B- 1 

If 6;; does not  exist,  or is ill-conditioned, the  pseudoinverse Mu: = xZ(n - m). (27) 
of &x is  used in the  solution to (17). 

E. Least Mean  Square Adaptation  Algorithm  (LMS) 

tive, minimum-seeking  method  for  determining  the least and the algorithm converges if K < 2. It can be seen  from (28) 

m =o 

Comparing (25) with (26) and (27) it is  seen that 

The least mean  squares  adaptation  algorithm [2] is an itera- u E K/(2Mu3 (28) 
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that  the effective value of u is normalized by u l  making the 
effective step size independent  of the  input signal  level. In 
practice,  this self-normalized form of the algorithm is not 
often used because of the added  complexity  of  computing ul .  
This form is  used here to  make  our  results  independent  of 
signal  level. 

It should be noted  that  other variations of  the LMS adapta- 
tion algorithm also exist which can achieve more  accurate esti- 
mates of the gradient at a cost of  more  computation [5] . 
These methods have not been explored in this paper. 

C Short-Time Spectral Analysis (SSA) 
Spectral  procedures have been  in use traditionally both for 

direct  and  indirect  methods  of estimating signal power  spectra 
[ 151 , [ 161 . Recent advances in the  theory of  short-time spec- 
tral analysis have provided a framework  for  implementing a 
system identification  procedure  entirely  in  the  frequency 
domain [ 131 , [17]. To illustrate this  procedure, consider the 
linear system of Fig. 1. If we define the (infinite-time) z- 
transforms of x ( n ) ,  y (n )  and e(n)  as X(z),  Y(z) and E(z) 
(recalling that E(z) i s  not well defined  for e@),  a noise  se- 
quence), then  it is  seen that 

Y(z) = X(Z)  M(z) + E(z)  (29) 

and thus an obvious procedure  for  estimating M(z) would be 
to form  the  estimate 

The  justification  for the estimate of (30) is that for practical 
implementations using a finite section of data,  the second 
term in (30) will  average to 0, leaving the first term which is 
the  true H(z). Aside from  the  many practical issues concern- 
ing use of windows to implement the analysis, the  estimate of 
(30) is notoriously slow in converging to  the true N(z), and  is 
subject to extremely large errors  (erroneous values of H(z)) 
when X(z) is  small for  some value of z ,  eg., when the  input 
signal is band-limited.  Recent  unpublished  work by M. M. 
Sondhi  has also  shown that (under some conditions)  although 
the  expected value of the estimate  of (30) converges to the 
desired value  (as  viewed through  the analysis  window), the 
variance of the estimate is infinite. 

A somewhat  more  robust  and  sophisticated analysis proce- 
ture is to use power  spectrum  estimation  methods to estimate 
H(z). Consider the power spectrum  of  the input, S,,(z), 
defined as 

~ x x ( z )  = X(Z>  X*(Z> (3 11 
and the cross-power spectrum  between x and y ,  SXY(z), de- 
fined as 

S,&) = Y(z)  X*(Z). (32) 

It is readily shown that  on an infinite-time basis, the cross- 
power spectrum satisfies the relationship 

SXY(Z) = Y(z)  X*(Z) = H(z)  X(Z)  X*(Z) t E @ )  X*(Z). (33) 
A * 

Short-time  estimates of S,,(z) and S,,(z) can  now be defined 
as 

&Jm = YI4)  rr,*W (3 5) 

where Y corresponds to the t-th block  or windowed  segment of 
samples of x(.) and y ( n )  from which estimates X,,(z) and 
Y&) are obtained. A reasonable implementation of the spec- 
tral  estimate, using short-time spectral estimation  methods, is 

where the  summation on Y includes L overlapping time seg- 
ments  of x ( n )  and y ( n )  [13],  [16] e In the  limit, as the  num- 
ber of time segments, L, becomes  large, it can be seen, with 
the aid of (33) and (361, that 

L x Hh1  ~;(4 

-t lim , 
Y =  I 

(3 7 )  

It can be shown that  the first term on the right of (37) con- 
verges to  M(z) (assuming h(n)  is not time varying) and  the sec- 
ond  term on  the right of (37) converges to zero  due to  the fact 
that e(n)  and x(.) are uncorrel.$ed. Therefore, in the  limit, 
as k becomes large the estimate M(z)  in (36) converges to H(z). 

The  formal  definition  of the short-time  spectrum of a signal 
x (n )  at  the time sample YI is 

Xn(eiwk) =x x(m> w(n - rn) e -jwkm 
(38) 

m 

where the finite duration low-pass window w(n)  determines 
both  the temporal  and spectral resol.ution of the estimates. 
Unfortunately  for the procedure used hereLthe  window also 
manifests itself directly in the estimation o f W ( k )  in a complex 
manner. By way of  example, if ~ ( Y I )  is a pure delay of x(n) ,  
1.e., 

= x@ - ko) (39) 
for a fixed value of ko ,  i.e., h ( ~ )  = 1 for n = k o ,  and 0 other- 
wise, then  it can  easily be shown that using (36) leads to the 
estimate (see Appendix I) 

where R,(n) and R,(n) represent autocorrelation  functions of 
the  input signal and  the window, respectively, and F represents 
the  Fourier  transform.  Thus (as in the case of white noise), if 
we  assume that 
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Rx(m) = o:s(m) (41) 

then (40) says that 

whereas for  the assumed  system 
- juk ,  H ( a ) =  e . (43 ) 

Thus, in the time  domain,  estimates  of &(n) are weighted  by 
the normalized  autocorrelation  function  of  the  window. 

Based on  the above  discuss@, the  algorithm  chosen to esti- 
mate &(n) was to estimate H(k) using (36), inverse Fourier 
transform the estimate to give h’(n), and  then  normalize  the 
result by using (42).2 It should  be noted  that (42)  provides 
only  a first-order correction to the effects of  the window. 

111. PERFORMANCE MEASURES AND ERROR MODELS 
FOR SYSTEM IDENTIFICATION METHODS 

In  the preceding  section we outlined  three  distinct  methods 
which  can be used to estimate  a linear system whose output 
is corrupted  by noise, given the  input and output  of  the sys- 
tem.  In  this  section we define  and discuss two performance 
measures for evaluating  these  methods.  They will  be denoted 
as the Q measure  and the modified Q or Q‘ measure.  The Q 
measure is  basically the  ratio (expressed in dB) of  the  norm 
of  the coefficient error  vector  or  “misadjustment  vector” [SI , 
[6] and  the  norm  of  the  true coefficient vector. It is useful 
for characterizing  how well the  estimate 8 approximates the 
true h. The  second  measure, Q’, is a  frequency  weighted  mea- 
sure which is useful for characterizing  the  performance  of sys- 
tem  identification  methods  for  nonwhite  inputs  and  it is  also 
useful  when  estimates of v(n)  and e(n) in the  model  of Fig. 1 
are desired. 

A. The Q Measure 
The Q measure  has  the  form 

(44) 

where 

Ah(m>=h(m)-h^(m)  ~ ~ = 0 , 1 , 2 , * . - , M -  1  (46) 

and Ah and h are  vectors of length 2 and are defined in the 
same manner as h in (1 5).  It will  be shown that  for  a white 
input signal x(n)  and  with  uncorrelated  white noise e(n), the 
quantity Q is a simple function  of  three  system  parameters, 
nm’ely,  the measurement interval N, over which  the linear sys- 
tem  estimate $ made,  the  estimated  number  of  impulse re- 
sponse  terms M, and the signal-to-noise ratio SIN, at  the  out- 

A 

2The  correction  used is to scale h (n) byJw (O)/Rw (n). Clearly this 
correction is valid only for small values of M. 

put  of  the system. Q is  seen to be  a weak function  of  the 
system h(n) in that  the signal-to-noise ratio is dependent on 

For  the least squares analysis method, i t  is relatively simple 
to derive an analytical expression for Q. From (12), (13), and 
(2) we  derive the result 

h (n). 

8-1 c h ^ ( 4  $ x x ( k m ) =  h(m)x(n  - m) +e(n)  
m =O 1 

. x ( n  - k)  (47) 

G-1 
= h(m)  x(n - m ) x ( n  - k )  

N -  1 

m = o  n =o 

+ e(n)x(n - k )  
N - 1  

n=o 

(49) 

or 

where 

n = o  

Equation (50) says that  the  finite time  correlation  between 
x(n)  and e(n) (due to  the finite measurement interval N )  leads 
to an  error Ah(n) in estimating the.true h(n)  in such  a way 
that  the estimated  component &(n) produces  a noise  signal 
$(a) which is finite time  uncorrelated  with x(n) .  This  funda- 
mentally important result is illustrated by  the error model in 
Fig. 2 which  shows  a parallel path in which x(n)  is convolved 
with Ah(n)  (which is a  hypothetical filter that represents  the 
finite time  correlation  between e(n) and x(n)) ,  and  the  noise 
sequence 2(n) is added to  the result. The true noise sequence 
e(n) satisfies the relation 

e(n) = 2(n) t Ah (n) * x (n). (52) 
Equations  (46)  and (50) can  now be used to show that 

Ah = h - f i  = 6;; $xe (53) 
and that 

Ah*Ah = 

For a stationary,  white  input signal, the matrix qXx assumes 
the  form 

6&, 0 = x(n - W x ( n  - I )  
N - 1  

(5 5 )  

(56) 

f l=0  

= u; * N .  6(k-  I) 

i.e., is a  constant  times an identity  matrix. Thus,  (54) 
becomes 
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Fig. 2. A block diagram interpretation of  the system  identification 
model in terms  of a misalignment  filter  and  a  modified  error signal. 

1 N-1 N-I  

2 - 1  
. x(n  - m ) x ( k -  m). (58) 

m=o 

Assuming that x (n)  is uncorrelated  from sample to sample, the 
last term in (58) is approximately 

2- 1 n 

x(n - m ) x ( k -  rn)=Mu$6(n - k). (59) 
m =o 

Thus, (58) reduces to 

h*: 
NU::  

a- 

We define the  term 0," (where v(n) is defined in Fig. 1) as 

By the same argument used to derive (61), (63) can be written 
as 

0," U; . hth. (64) 

Combining (45), (6 l), and  (64) gives for Q 

and by using the definition of (5) we get 

white 10 loglo [$1- S/N(dB). 
input 

Equation (65) predicts the performance of the least squares 
analysis system identification method for white uncorrelated 
inputs. 

It is seen that Q in (65) is directly dependent  on  the signal- 
to-noise ratio  at the  output o f  the system. It improves 

(decreases) by 3  dB per doubling of  the block size N of data 
usedAin the  e$mation of h and it degrades (increases) with 
log M where M iKthe assumed size of the system (and where it 
is assumed that M > M ) . 3  Furthermore, it can be  seen that Q 
in (65) is independent of the actual fiter h that is being 
estimated. 

For  the case of nonwhite  inputs  the matrix $xx is no longer 
diagonal and it is not possible to express Q in  a  form as simple 
as (65). In general, for nonwhite inputs  the values of Q will 
be larger than  (65)  and in  this sense (65) represents a lower 
bound  on  the expected value of Q. That is, a white uncorre- 
lated input signal  is the best form of input signal to use  in the 
system identification problem. 

B. Modified Q Measure for Nonwhite Inpu t s  

For  the case of nonwhite inputs,  the overall model can be 
expressed in the form in  Fig. 3(a). We assume that the input 
to the system z(n) ,  can be modeled as the  output of a linear 
system g(n), with spectrally flat input signal x@).  For sim- 
plicity, we  assume g(n) is an FIR filter  with impulse response 
duration G samples, i.e., g(n )  is nonzero  only for 0 < n  < 
G - 1. Fig. 3(b) shows the system identification  model for 
this  problem. 

Whenever the  input signal does not have a  flat  spectrum, the 
problems in system identification can become greatly magni- 
fied. This can be seen by considering z ( n )  to be  a bandpass 
signal. For this case there is almost no information  in the 
output signal y(n) ,  about  the behavior of  the system h (n), in 
frequency ranges where the  input signal is greatly attenuated. 
As such, reliable identification, using any system identification 
procedure, is quite  difficult.  Formally, one could express this 
problem  in  terms of ill-conditioned matrices that need to be 
inverted, etc. 

In some applications, however, it is sufficient to have a good 
estimate of  the system h at frequencies only where the input 
signal energy Z(eiw) is large, This applies particularly in cases 
where estimates of u(n) and e(n) are primarily desired. Such 
estimates can be obtained by first solving the system identifi- 
cation  problem to obtain $. The estimate 3(n) is then obtained 
by convolving the known input z ( n )  with h ,̂ and 2(n) is ob- 
tained by subtracting $(n) from  the known output y(n) .  At 
frequencies where Z(eiw)  is small, it is not as important in 
this case to have  very good estimates o f  H(eiw). In applica- 
tions such as this  a frequency weighted measure of perfor- 
mance is desired which emphasizes the  importance of those 
frequencies where X(e iw)  (or G(eiw)) is  large and de- 
emphasizes the importance of those frequencies where X ( @ )  
(or G(eiw)) is small.  In this section we propose such a mea- 
sure, Q'. 

The modified Q measure Q', that we propose, applies a fre- 
quency weighting which is equal to  that of the frequency 
response of  the filter g(n)  in Fig. 3(a) which is used to create 
the nonwhite signal z (n )  from the white signal x@). This 
weighting can conveniently be achieved by convolving h(n)  
and &(n) by  the g(n)  as shown in  Fig. 4. This procedure, illus- 

3For M < M ,  the error i% estimating $(n)  for n > M clearly  can get 
n A 

very large  since no value of h ( n )  is obtained. 
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Fig. 3. Block diagram of the linear system  model for nonwhite  input 

signals. 

Fig. 4 .  Block diagram of the  processing to give  the signals used in the 
Q’ measure. 

trated in Fig. 4, serves to weight the  performance  measure  by 
the frequency  spectrum  of  the input signal.  More formally, 
we define the measure Q’, as 

Using  Parsevals theorem  (66)  can be transformed to the fre- 
quency  domain , giving 

r I IH(eiW) - i?(e’w>12IG(eiw)l2 do 

Jnn IH(eiW)12 lG(eiw)12 do 
Q‘ = 10 log10 

(67) 

which explicitly shows  the  frequency weighting of  the Q’ 
measure. 

The properties  of Q‘ as a  function  of N,  fi, and S/N are 
somewhat  more  complicated than  those  of  the Q measure, 
since the “coloring  or unwhitening’: filter,  g(n), affects the 
result. If  we denote Q’ a,s Q’(N,M, G, SIN), and similarly 
denote Q of  (65) as Q(N, M ,  S/N) then  it can be  shown [see 
Appendix 111 that 

Q‘(N, 2, G, S/N) < Q(N, fi + G - 1, S/N)  (6 8 a) 

i.e., the  estimate  of h(n) is  no worse than equivalent Q 
estimate  with an impulse response which is M + G - 1 points 
long (i.e., duration  of  the  convolution  of  g(n)  and h(n)). 
Furthermore,  it is anticipated  (but not rigorously  proved) 
[see Appendix 111 that 

Q‘(N & G, S / W  = QW, 4, (68b) 

Le., the variation of Q’ with S/N and N is essentially identical 
to  that  of Q for white inputs as discussed earlier. 

An important consideration in implementing  the Q’ measure- 
ment  of (66) is how one  obtains  the g(n)  for  a signal  whose 
frequency  response is not  flat, such as a  speech  waveform.  For 
such signals the techniques of linear prediction have been suc- 
cessfully  used to give a  good  approximation to a linear system 
which  can be excited  by  a flat spectrum  input (either pulses  or 
noise), and whose spectrum is a least squares  estimate  of  the 
signal spectrum. As such,  the linear system g(n)  is obtained 
directly from linear prediction  techniques as the  impulse re- 
sponse  of the linear prediction  filter. 

We now  present  examples  which  demonstrate how  the above 
measures  worked on  both  synthetic and  actual signal for vari- 
ous  types  of linear systems  and  various levels of noise. 

IV. EXPERIMENTAL RESULTS 
To validate the models  of  the  previous sections, a digital 

simulation  of the model  of Fig. 1 was made.  Three  types  of 
input signal, x@), were used.  These  included: 1) white Gaus- 
sian noise; 2) band-limited Gaussian noise;  and 3) speech sig- 
nals. For  the linear system h(n),  two examples were used. 
One  was a simple 7-point  FIR  filter ( M =  7)  whose  impulse 
and  log  magnitude  responses are  given in Fig. 5 and in Table  I. 
As seen  in this figure, the log magnitude  response was smooth, 
and varied about 10 dB  across the  entire  frequency  band. The 
other filter used in the simulations was a  25-point, linear phase, 
equiripple  FIR  low-pass filter. The impulse and log magnitude 
responses of  this filter are  given in Fig. 6  and  Table 11. Inde- 
pendent Gaussian  noise (e(n)) was added to  the filtered input 
to give signal-to-noise ratios (S /N)  of 0, 8, 16, 24, and infinite 
dB. 

The  three  system identification methods  of  section I1  were 
used to estimate the known h(n) for several combinations  of 
the above system  parameters.  For  each  example  the  quantity 
Q (or Q‘) of  section I11 was measured. In this section we pre- 
sent  typicaLcurves  of Q as a  function  of N (the analysis frame 
duration), M ,  h (n), and S/N. 

A.  White Noise Input 
Fig. 7  shows  a series of curves of Q (on  a log scale) versusN 

(on  a log  scale) for  the filter of Fig. 5 ,  with & = 15, and vari- 
ous values of SIN, for  the LSA method. The solid curves show 
the measured values of Q and  the  dashed  curves  show  the 
predicted values of Q as  given by (65). The  agreement  between 
the  computations  and  the  predicted values  is  well within  the 
expected statistical variations for these cases. For  the infinite 
S/N case, the  measured  curve  of Q versus N is below  the 
-80 dB cutoff level of  the  plots, and is thus not included  her? 
Equivalent  computations were made for  other  valuesAof M 
(notably  7  and 25), and for  the low-pass filter (with M =  25 
and 34) and  the results were equivalent to those  of Fig. 7, i.e., 
close agreement  between  theory  and  measurement. 

Figs. 8 and 9 show  a set of comparable curves for  the SSA 
method.  For this method  a  Hamming  window  of size L sam- 
ples was used in the analysis, and  the  window was moved  by 

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2021 at 13:09:49 UTC from IEEE Xplore.  Restrictions apply. 



326 IEEE TRANSACTIONS ON ACOUSTICS,  SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-26, NO. 4, AUGUST 1978 
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(b) 
Fig. 5 .  Impulse  response  and log magnitude  response  of a simple filter 

used in the investigations. 
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TABLE I 
VALUES OF THE IMPULSE RESPONSE FOR THE FILTER OF FIG. 5 

f l m  
n 0.1 
I 0.5 
2 1.0 

4 -0.5 
3 0.5 

6 0.5 
s -1.0 

TABLE I1 
VALUES OF THE IMPULSE RESPONSE FOR THE FILTER OF FIG. 6 

f l h ( n ) f i h ( n )  

3  0.014s 16 -0.0280 
4 0.0143 17 -0.0470 
s -0.0013 18 -0.0287 

7 -0.o280 zn 0.0143 

in 00149 23 o.ooo7 
I I  0.2456 24 -0.on16 

6 -0.0287 19 -0.0013 

8 -0.0280 21 0.0145 
9 0.0428 22 0.0070 

N 

00 

Fig. 6. Impulse response and log magnitude response of a low-pass 
filter used in the investigations. Fig. 8. Curves of Q versus N f o r k =  15, SIN = -, and several  values of 

window size L for the SSA method  for  a  white  input signal. 
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Fig. 7. Curves of Q versus N for M = 15 and several  values  of SIN for Fig. 9. Curves of the lower bound of Q versus N for M = 15 and  several 
A A 

the LSA method  for  a  white  input signal.  values  of S/N for  the SSA method  for a white  input signal. 
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L/4 samples  between  adjacent sections [13], i.e., except  for 
endpoint effects, each input sample was  used  in four  distinct 
short-time spectral estimates, Thus, in presenting results for 
the SSA method,  the window  length L is an additional analysis 
parameter whose effects must be considered.  Thus, Fig. 8 
shows  a set %f curves of Q versus N for  the simple fdter of 
Fig, 5, with M =  15, with L = 64,128,256, and  512, and  with 
SIN= 00 (i.e., no additive noise). A complete analysis of  these 
curves is beyond  the scope of this paper. However,  several key 
points  about  this  method  of analysis can be  seen from this 
figure. First,  it is seen that  for smaller  values of N i t  is prefer- 
able to use shorter  windows to reduce  the  end effects and to 
provide an increased  number  of  short-time spectral estimates 
for averaging.  However, for longer values of N ,  the  longer  the 
window  duration  the  lower  the value of Q which is  achieved. 
This effect is related to  the aliasing noise  of  the analysis 
(obtained as a result of  performing the division  in (36)), which 
is reduced  with  increased  window length. Finally, it  is seen 
that  for large  values of N, the value of Q approaches  the 
machine  accuracy  of  about -80 dB, thus  showing  that  the 
method will eventually converge to the least squares  estimate. 

Fig. 9  shows  a set of curves of Q versus N for several  values 
of S/N for  the SSA method. Based  on the discussion above, 
the “lower  bound”  of  the curves  is drawn as the solid  curves 
shown in the figure. The  dashed curves  again show  the  theo- 
retical predictions for these cases. It is  seen in this figure that 
for S/N in the range 0 to 24 dB,  the SSA method can provide 
filter estimates that are fairly close to the  optimum,  except  for 
small  values of N where the  end effects still dominate.  The 
aliasing effects for large N do  not occur  here because the addi- 
tive noise  for  these cases  is significantly greater than  the alias- 
ing noise. 

Curves of  the results obtained for  the LMS adaptation 
method are  given in Figs.20 and 11. Fig. 10 shows a set of 
curves of Q versus N ,  for M = 15, and SIN= 00 for  the filter of 
Fig. 5. The  parameter for  the individual curves  is K ,  the step- 
size multiplier  of the  adaptation  algorithm. As seen  in these 
curves, the values of Q decrease monotonically to the  compu- 
tation noise  floor.  The rate at which  these curves decrease is 
determined by  the value of K .  Thus, for small  values of K the 
convergence  is slow; for large  values of K it is much faster. At 
first thought  such curves would seem to imply that one  should 
use  large  values of K .  However,  if we recall that K is the cor- 
rection  term  multiplier (26), then we realize that if K is  large, 
small errors in calculating the  gradient  of e can  lead to larger 
errors in estimating h as will be seen later in  Fig. 11.  Thus, 
with  noisy signals a  tradeoff in choosing K is required. The 
curves in Fig. 10 give  an indication  of  the value of N required 
to obtain  a  desired value of Q for  the noise-free  case. 

Fig. 1 1 shows curves of Q versus N for  SIN= 8 dB, and  the 
same parameters as Fig. 10. Values of K of 0.01 and 0.05 are 
used to show  the convergence properties  of the algorithm.  For 
these cases a steady-state noise floor (due to the  gradient cal- 
culation of  the noisy signal) limits the value  of Q which can  be 
obtained. An expression for  this steady-state noise  floor  can 
be obtained based on  the  work  of Widrow  (see [4, equation 
D.201). Based on results by Widrow it can  be  shown that 

3 
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Fig. 10. Curves of Q versus N for M = 15, SIN = a, and several  values 
of K for  the LMS adaptation  algorithm for a  white  input signal. 
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F i g . l l .  Curveso fQver susNforM=15 ,S /N=8dBforK=O.Oland  
0.05 for  the LMS adaptation  algorithm  for  a  white  input signal. 

* 

m =o 

and since 

then 

K u,“ = -  
2 u: 
- 

Plots of Q 188 for K = 0.01 and 0.05 are shown in  Figure 11, as 

well  as the curve of Q 

The  point  at  which  these  two curves intersect provides a lower 

white versus N for  optimal  estimation. 

limit on the value of N required for convergence of  the LMS 
adaptation  algorithm.  Combining  (72)  and  (65)  provides an 
expression for this lower limit of  the  form 

Nlmin 2 2 / K .  (73) 

It should  be  emphasized that one  would  expect  a value of N 

input 
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I, 

Fig. 12. Block diagram of  actual  system used to test the system  identi- 
fication  algorithms for a low-pass input signal. 
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Fig. 13. Curves of Q’ versus N for M = 15 and several  values of S/N for 
the LSA method  with  a  band-limited  noise  input signal. 

* 

on the order of  two  or more times greater than  the value  of 
(73) in most practical cases. As seen in Fig. 11, once the con- 
vergence to  the noise floor of (72) is obtained, larger values of 
N provide no improvement in the estimation. 

B.  Bandpass Input Signals 
To evaluate the performance of each of the three system 

identification  methods on band-limited input signals, the sys- 
tem  of Fig. 12 was simulated. The filters g(n) and h(n) corre- 
sponded to  the filters of Figs. 6 and 5 ,  respectively. Thus, the 
signal z(n)  was a low-pass signal  whose frequency  components 
were attenuated  by at least 54 dB for frequencies above 0.2F,, 
where F, was the sampling rate of  the system. Independent 
additive Gaussian  noise e(n) was  again used to provide the 
signal y (n) from which the system  function f i  (n) relating y (n)  
to z(n) was estimated. 

Fig. 13  shoys a set of curves of Q’ (the modified Q measure) 
versus N for M =  15, and several  values of S/N for the LSA 
method. The solid lines are the measured values of Q’, whereas 
the dotted lines show the theoretical curves of Q versusN for 
the same set of conditions. As discussed earlier, the measured 
curves of Q versus N were vastly different  from  those shown in 
Fig. 13 due to  the lack of high-frequency information in the 
input signal. However, when the Q’ measure was used, the 
high-frequency inaccuracies in $(n) were  given essentially zero 
weight by the  “coloration”  filter g(n). Thus,  the curves of Q’ 
versus N of Fig. 13 for  the highly band-limited input are essen- 
tially the same as the curves of Q versus N of Fig. 7 for  the 
white-input case. At the  bottom of Fig. 13 is shown the curve 
of Q’ versus N for infinite S/N. In this case the value of Q’ is 
about  -70 dB, reflecting the residual error  in estimating the 
high frequency behavior of h^(n). 

-‘i -70 

-80 
10 io0 io00 10,000 

N 

Fig. 14. Curves of Q‘ versus N for M = 15  and several  values of SIN for 
the SSA method  with  a  band-limited  noise  input signal. 
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Fig. 15. Curves of Q and Q‘ versus N for M =  15, SIN= 8 dB for 
K = 0.01 and 0.05 for  the LMS adaptation  algorithm  with  a  band- 
limited  noise input signal. 

A 

Results on the band-limited input signal for the SSA method 
are  given  in  Fig. 14. The curves plotted in this figure again 
represent the lower bound of the individual curves for different 
window lengths, L .  The shapes of the curves are essentially 
identical to those of Fig. 9 in that  for small  values of N, the 
curves are significantly above the  theoretical estimates of the 
Q measure (shown as the  dotted curves) due to the end  effects 
in the SSA method. For larger  values of N the values of Q’ are 
essentially equal to  the theoretical values. One very important 
point must be made concerning the way  in which Q’ was com- 
puted  for these curves. For the SSA method, when the input 
signal has essentially no energy in a band, the  estimate  in fre- 
quency is essentially unconstrained at these frequencies. As 
such, taking the inverse DFT of the spectral estimates leads 
to an impulse response with a large amount of time aliasing- 
i.e., an unconstrained set of frequency samples cannot possibly 
guarantee a  finite  duration time response. Therefore, straight- 
forward linear filtering of $(n), the time response from the 
SSA estimate by g(n), the unwhitening filter, is not adequate 
to eliminate the aliasing noise. However, it can readily be 
shown that circular convolution of $(a) with g(n) will indeed 
eliminate the aliasing noise. The proof of this statement is 
straightforward and is based on the fact that circular convolu- 
tion  commutes  with time-aliasing. Since the convolved signal 
is time-limited, no aliasing  is present when this procedure is 
used. 
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Fig. 15 shows a set of results obtained  on  theAband-limited 
input using the LMS adaptation  algorithm  for M = 15, S/N = 
8 dB, and  for K = 0.01  and 0.05. Included in this figure as 
curves of Q versus N ,  Q’ versus N ,  and  the theoretical white 
noise  curve of Q versus N .  As discussed above,  the  measure- 
ments  of Q versus N are highly in error for  these cases, whereas 
the  measurements  of Q‘ versus N approach the theoretical least 
square curves. As seen in this figure, the shape  of  the Q’ versus 
N curve differs somewhat  from that of Fig. 11 ; however,  the 
differences are of  little  consequence. The  general behavior  of 
the curves  is essentially the same with a region of  convergence, 
followed  by  a statistical fluctuation  about  the steady-state 
%oise floor. Fig. 16 shows  a  comparison  between  the  estimated 
H(eiw) and the actual H(eiw) for one case  using the LMS 
adaptaJion  algorithm. The simulation was done as in Fig. 12 
with M =  15, K = 0.02, g(n) in Fig. 6  and h(n )  in Fig. 5. 
Fig. 16(a)  shows a comparison  of  the  log  magnitude  responses; 
Fig. 16(b)  shows  the  group  delay  responses;  and Fig. 16(c) 
shows the  impulse  responses (for N = 2000).  It is clearly 
seen from this figure that  most  of  the  error in estimation 
occurs for frequencies above the  passband  cutoff  of the g(n)  
filter, as anticipated (Q = -2.9 dB  and Q’ = -37 dB). 

C Speech Input Simals 
The last test signal used to evaluate  the  three  system identifi- 

cation  techniques was  an actual speech signal.  Fig. 17(a) 
shows  a 400 sample  section  of  voiced  speech (quasi-periodic 
waveform)  weighted  by  a Hamming window,  with  a log  magni- 
tude spectrum as shown in Fig. 17(b), and  with LPC fit to the 
spectrum  shown in  Fig.  17(c). As seen  in this figure the speech 
signal spectrum is essentially a harmonic  spectrum  showing 
valleys which are 20-40 dB lower in magnitude  than  adjacent 
harmonic  peaks.  The overall  shape of  the spectral envelope (as 
seen from  the LF’C fit) is that  of a cascade of resonators. As 
such  a 60 dB variation in the spectral envelope  occurs  between 
the first prominent  peak,  and  the valley at 5 kHz. Thus this 
input signal would be expected to provide  a  good  test  of  the 
overall capabilities of  the different system  identification 
methods. 

The  model for testing the  systems using the  speech signal 
was essentially that  of Fig. 12 with  one  major  exception. If 
we denote  the  speech signal  as z(n),  then  the  “coloration” 
linear system g(n)  is not known exactly. Thus to provide ana- 
lytical estimates  of Q’ for  the  speech  input,  the  system g(n)  
also had  to be estimated  from z(n). For this problem  standard 
LPC techniques were used. As such the range of values of N 
which  was considered was from 50 to 1000. Outside this 
range the LPC estimates were sufficiently inaccurate to greatly 
degrade the Q’ measure.  It  should  be noted  that even within 
this range the LF’C estimates  of g(n)  are not  exact; as such,  the 
Q‘ computations were somewhat affected. 

The curves of Q’ versus N for various S/N values for  the  three 
systems are  given in Figs. 18-20. Fig. 18 shows  the results for 
the LSA method  for M =  15. It is seen that  the measured val- 
ues  of Q’ are  generally greater than  the  predictions  of  (65) for 
the  white input; however the differences, except  for small N, 
are about 5 dB or less. Thus  the LSA method is  seen to work 
quite well on  this  section  of  speech. 
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Fig. 16. Curves of log  magnitude, group delay, and impulse  responses 
for both  the  %timated and actual systems for the LMS adaptation 
algorithm  for M = 15, SIN = - and N = 2000. 
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Fig. 17.  Curves of a  speech  section of 400 samples  (windowed  by a 
Hamming window),  its  log  magnitude spectral, and the LPC log mag- 
nitude  fit. 

Fig. 19 shows  the results for  the SSA method  for i@= 15. 
The  effects of having extremely  low signal  level in parts  of  the 
frequency  band are  seen in that  the measured curves  are about 
4-12 dB  above the theoretical curves for  the  white noise  case. 
As discussed in  the previous  section, Q‘ estimates for  the SSA 

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2021 at 13:09:49 UTC from IEEE Xplore.  Restrictions apply. 



330 IEEE  TRANSACTIONS ON ACOUSTICS,  SPEECH,  AND  SIGNAL  PROCESSING,  VOL.  ASSP-26,  NO. 4, AUGUST 1978 

- 5 0 1  - 7  
-70 - 

s/n; m 
- 80 1 

10 100 1000 lC,GOC 
N 

Fig. 18. Curves  of Q' versus N for M = 15, and several  values of SIN 
for the LSA method  for  a  speech  input signal. 
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Fig. 19. Curves of Q' versus N for M =  15, and several  values of  SIN 
for the SSA method  for  a speech input signal. 
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Fig. 20. Curves of Q and Q' versus N for k =  15, SIN = 8 dB,  for 
K = 0.01, and 0.05, for  the LMS adaptation system for  a  speech input 
signal. 

method are more sensitive to exact values of g(n)  than  the LSA 
method since g(n) must also  remove the aliasing noise from 
the  estimate. Since g(n) was estimated  from LPG methods, 
the Q' estimates  for the SSA method were somewhat  poorer 
than  the LSA method. 

Finally,  Fig. 20 shows the results for  the LMS adaptation 
method  for k = 15,  and  for S/N = 8 dB.  The measured  values 
of Q' converge to  the steady-state noise floor as in  the previous 
examples. For  this case the performance of  the LMS adapta- 
tion  algorithm is comparable to the SSA method  but  not as 
good as the LSA, as seen by  the difference  between the  theo- 
retical curve for the white input (the dotted line in Fig. 20) 
and  the actual Q' measurements. 

V. DISCUSSION OF THE RESULTS 
The purpose of this  work was to investigate the advantages 

and disadvantages of  three system identification  methods using 
a given  class of input signals.  Based on  the theoretical discus- 
sions of Sections I1 and 111, the results presented  in  Section HV, 
and  informal observations from  the simulations, the following 
conclusions are drawn. 

1) As expected,  the LSA method was the most  robust 
method  of  the  three, providing excellent estimates  of h (n) for 
both white  and  band-limited signals, and across a wide  range 
of  signal-to-noise ratios. 

2) The  only possible  disadvantage  of the LSA method is 
that  the implementation effectively solves  an k t h  order  matrix 
equation (via  an efficient recursion procedure). Using double 
precision arithmetic, inaccuracies in  both  the compui$ion  of 

j )  and g(n )  started to become measureable for M on  the 
ord%r of 50.4 As such,  estimation  of systems with large  values 
of M (e.g. the speech echo canceler, etc.) would  generally not 
be practical using LSA. The recognition of this  fact  has led to 
the widespread use  of the EMS adaptat@  method. In addi- 
tion,  the storage for $xx(i, j )  grows aKM2, again making  the 
method impractical  for large  values  of M .  

3) The SSA method was shown to perform almost as  well  as 
the LSA method  for  both  white  and  nonwhite noise signals in 
the presence of noise. The  major disadvantage of the SSA 
method is the possibility of having  severe  aliasing distortion  in 
the estimation  of E(n) which  would  have to be removed in any 
practical system. Thus,  for speech signals,  removal of the 
aliasing by filtering f i(n) with g^(n), the LPC estimate of the 
"speech filter" is not completely  adequate because of  errors in 
obtaining g^(n). As such the SSA estimates were somewhat 
poorer than  the LSA estimates  for speech signals. 

4) The big advantage of the SSA method i s  that  the irnple- 
mentation is simple, can be used for large M values,  readily 
amenable to either digital hardward (e.g., CCD implementa- 
tions o f  the DFT's) or  to array processors which are currently 
becoming  more widesRread in use. The storage for  this  method 
grays linearly with M and  thus estimation  for values  of E@) 
for A4 on  the  order of 5 12 or more is entirely practical. 

5 )  The LMS adaptation algorithm provides a robust  alterna- 
tive to  the LSA method, and is useful for  both white  inputs, 
as well as band-limited inputs.  Although the performance was 
not as good as the LSA method,  the differences were not so as 
to  make  the  method undesirable for virtudy any application. 

69 Generally the convergence rate of the EMS adaptation 
algorithm is affected  by  band-limited  inputs  and  by high 
signal-to-noise ratios. It requires a much larger number of sam- 
ples, N ,  compared to the LSA method  and,  therefore, is 
limited to applications where h(n)  varies very slowly.' 

7) An important advantage of the LMS adaptation algorithm 
is that  thejmplementation is simple and  can be used for Iarge 
values of &I. In addition,  the2torage  for  the LMS adaptation 
algorithm grows linearly withM, as with the SSA method. 

* 

4Alternative slower matrix  solution metJods can  make  the LSA 
method  more accurate for  larger  values of M .  However, the computa- 
tion  time can  become  a  problem. 

SMultiple passes of  the LMS adaptation  algorithm on  the same data 
with  adaptive  step sizes can increase the speed of convergence of this 
method. 
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VI. SUMMARY 

In this paper we have studied three distinct methods  for 
identifying a linear system in the  presence  of noise. We have 
shown  the  advantages  and  disadvantages  of  each  of  the  meth- 
ods for the class of signals which we studied. The results of 
this investigation will hopefully  help  a user of  such  methods 
to make efficient use of each  of  these three techniques as  war- 
ranted  by  the individual problems. 

APPENDIX I 
SSA ANALYSIS OF A PURE DELAY 

Consider an arbitrary signal x ( n )  as input  to  a linear system 
with output  y(n) = x ( n  - ko), i.e., a  pure delay. Applying  the 
defmition  of  the  short-time  spectrum  (38) toy(n) we  see that 

Y,(eiw) =x y (m)  w(n - rn) e -jwm (A. 1) 

=x x(m - ko)  w(n - m) e-jwm ( A 4  

m 

m 

f i (n)=Cx(I)x(kO + I - n ) R , ( n )  64.9) 
I 

= Rx(ko - n )  Rw(n). (A. 10) 
A 

Thus the original numerator N ( u q )  can  be written as 

fi(u,> = F L 8 x ( k o  - n)  Rw(n>l (A.ll) 

where F represents  a  Fourier  transform of  the sequence.  Simi- 
larly, the  denominator  of  (36)  can trivially be  shown to  be of 
the  form 

= F M - n )  Rw(n)l * (A. 12) 
Thus,  the  short-time spectral estimate  of  a  pure  delayed signal 
with  delay ko gives 

APPENDIX I1 
PROPERTIES OF THE Q' MEASURE 

(A. 13) 

= x x(~) w (n - ko - I )  e-jw'. (-4.3) 
As shown in Section 111, the Q' measure is defined as 

I Q' = 10 log [-;i;-] ArtAr 
(B- 1 1 

Now we consider the definition of the SSA estimate (36). In 
particular, if we examine the  numerator  of  (36) [call this where 
G(uq)l we  get 

N ( u q )  = e - jwqko x ( ~ )  w(r - ko - 11 e 
Ar(n) = Ah(n) * g(n) 

A -jwql 

r I  and 

x(m)  w(r - rn) e 
+ jwqm 

m 
('4.4) 

r(n) = h (n) * g(n) (B.3) 

and  where it is assumed that  the  length of g(n) is G ,  the length 

where  we  have assumed both x and w are  real  signals. Equa- 
tion (A.4) can be put in the form 

of h(n) is M (and it can  be extendzd to  length k by appending 
zeros)  and the length of &(n)^is M. The  lengths  of  both r(n) 
and Ar(n) are then R = G + M -  1. In  vector  form (B.2) and 

fi(u,> = e x ( O x ( m ) e  -jwqko -jwq(I-m) \ I  

(B.3)  can be  expressed in the  form 
I I n  Ar = FAh 

*Rw(ko t I - m) (A.5) 
and 

where 
r = F h  

R w ( k o t I - m ) = ~ w ( r - k o - l ) w ( r - r n )  
r (A'6) where F is the R by 2 convolution  matrix 

is the  autocorrelation  function  oLthe  window. If  we taken  the 
DFT  of (AS) [calling the result N(n)] we get 

S(n> = - fi(uq> ejwqn 
1 

p 4  F =  
1 

=- x(Z)x(m)Rw(k0 + I -  rn) 
P I ,  x e-jw4(ko+ I-m - n )  

(A.7) 
4 

Recognizing that  the last summation gives the result 
where 

R = G + & -  I 
- 1 -jwq(ko+Z-m-n) e = 6 ( k , t I - r n - n )  (A*8) and 
p *  

(where P is the size DFT used throughout  the analysis),  (A.7) 
becomes r = [r(O), r(l), - * * , r(R - I)]. 

Ar = [Ar(O),   Ar(l) ,  * . , Ar(R - l)] 
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Furthermore, in a manner similar to the derivation of  (17)  and 
(53)  and  with aid of (B.4) and (B.5) it can be  shown that 

Ar = F&i &., (B. 10) 

(B. 11) 

where the model  of Fig. 3 and  Fig. 4 is assumed. Also, by 
recognizing that 

r = F4zi 4zy 
-_ - 

N - 1  
$ze(k) = e(n) z(n - k )  (B.12) 

n = o  

$zz(k, I )  = z (n  - k ) z ( n  - I) 
N - 1  

n = o  
(B. 13) 

and 

G - 1  
z(n)  = g ( m ) x ( n  - m) (B. 14) 

m =o 

and  with definition  (B.6) it can be shown that 

6ze  = Ft6xe. (B. 15) 
* 

It should be noted  that qZe is MX 1 in size  and $xe is defined 
to be  R X 1 in size. 

From  the definition  of &z in (B.13), and  with  the aid of 
(B.14) and  the diagonal approximation as in  (56), $zz can be 
shown to have the  form 

FZz = N U ; F ~ F  (B. 16) 

where &z is  an fi X k matrix.  From (B.lO) we now see that 
ArtAr has the  form 

ArtAr = [F&j &e] [ F & !  $2e] . (B.17) 

Noting that JZz = $iz we then get 

ArtAr = $ie&iFtF4zi -- - 
Applying (B.15) and (B.16) then gives 

ArtAr = 7 $ieF(FtF)-lFtF(FtF)-lFt$xe 1 

N @x 

1 
- - $;e F(F~F)- '  F ~ & ~ ~  - 

N 2  Uft. 

(B. 18) 

(B.19) 

where 

A = F(F'F)-'Ft. (B.20) 

In a manner similar to  the derivation of  (64) we get 

and  therefore the Q' measure can be written in the  form 

(B.22) 

where f i e  is an  R X 1 column  vector  and A is an  R X R ma- 
trix.  The  matrix A has several interesting  properties.  First, it 
can be  shown that 

A = A'A. (B.23) 

From  this  property if follows that if A is  of rank &, then it has 
M eigenvalues that are equal to 1, and G - 1 eigenvalues that 
are equal to  0. The eigenvalues of A satisfy the relation 

A$ = (B.24) 

where 4 is  an eigenvector of A and h is  an eigenvalue. Premul- 
tiplying by A t  and  noting  that A = A t  gives 

AtA@ = hAt$ = hA4. 

Applying (B.23) and  (B.24)  leads to 

A $  = hA$ 
A$ = h24 

h = h 2  = o ,  1 (B.25) 

or 

i.e., hAmust be either 0 or 1. Since F is an R X fi matrix wheKe 
R > M it isAassumed that  the rank  of F, and  therefore A ,  is M .  
Therefor: M eigenvalues of A are equal to  one  and the remain- 
ing R - M = G - 1 eigenvalues  are equal to  zero. A can now be 
written,  by means of a singular  value decomposition [ 191 , in 
the  form 

A = V A U ~  (B.26) 

where A is a diagonal matrix  of eigenvalues of the  form 

(B.27) 

and V and U are R X R unitary  matrices. Applying this prop- 
erty  to (B.22) gives 

A&e = ( f i e  A ($;e W t *  (B.28) 

In  this  form it can be seen that  the presence of the zero eigen- 
values in A tend to "dilute" the value f i e  A$xe by a factor  of 
approximately (G - l)/R. 

Another way of looking at  this  property is to  recognize that 
(FtF)-'F is the generalized inverse of  the  matrix F [19] . That 
is if we define 

F* = (F~F)-'F' (B.29) 

and 

s = F *qXe (B.30) 

then s is the solution to  the equation 

u = qxe - FS (B.3  1) 

such that utu is a minimum. Using (B.31), utu can be ex- 
pressed as 

U'U = ($xe - Fs)~(&,, - Fs). (B.32) 

Applying  (B.30) and  expanding  terms gives 

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2021 at 13:09:49 UTC from IEEE Xplore.  Restrictions apply. 



RABINER e t  al.: FIR SYSTEM  MODELING  AND IDENTIFICATION 333 

Ut# = &&xe - 2&FF”$xs,, + (FF*$x;,,)t(FF*6xe). (B.33) REFERENCES 

using the  definition of F” in (B.29), the  definition o f A  in [ l ]  P. Eykhoff,  System  Identification. New York: WileY, 1974. 

(B.20) and canceling  terms gives [2] B. Widrow,  “Adaptive  filters,”  in  Aspects ofNetwork  and System 
Theory. R. Kalman  and N. DeClaris, Eds., Holt,  Rinehart  and 
Winston, 1971,pp. 563-587. 

(B’34) [3] M. J. Levin,  “Optimum  estimation  of  impulse  response in the 
presence of noise,” IRE Trans. Circuit  Theory, vol. CT-7,  pp. 

f i e  Aqxe = $:e&e - d ~ .  (B.35) [4] B. Widrow et al., “Adaptive  noise  cancelling:  Principles  and 

Thus,  it is  again  seen that  the  matrix A effectively ‘‘dilutes’’ [SI B. Widrow, J. McCool, M. Larimore,  and C. Johnson,  “Stationary 
the inner  product  by  some positive value U t U .  Based and  nonstationary  learning  characteristics of the LMS adaptive 
on the derivation of the Q measure in (57)  through (61) we €iiter,”Proc.  IEEE, vol. 64,  pp.  1151-1162, Aug. 1976. 

see that 
[6] M. M. Sondhi  and D. Mitra, “New results on the  performance  of 

a well known class of adaptive  filters,”  Proc. IEEE, vol. 64, pp. 

[7] R. W. Lucky  and W. R.  Rudin,  “An  automatic equalizer for 
general-purpose  communication  channels,”  Bell  Syst. Tech. J., 

Thus  the Q’ measure  can be  written in the  form [8] M. M. Sondhi,  “An  adaptive  echo  cancellor,”  Bell  Syst. Tech. J., 

$0,’ (G - 1) U: )I. (B.37) [9]  J. D. Gibson, S. V. Jones,  and J. L. Melsa, “Sequentially  adaptive 

As G goes to 1 the  matrix A becomes the  identity  matrix m,d [ l o ]  L. J. Griffiths, “A simple  adaptive  algorithm  for  real-time  pro- 

ut# goes to zero  because F has  been  assumed to have rank M .  
cessing  in antenna arrays,”  Proc. ZEEE, vol. 57, pp.  1696-1704, 
Oct.  1969. 

In this case the Q’ measure  degenerates to the Q measure  and [11 I N. S. Jayant, ‘‘Digital coding of speech  waveforms: PCM,  DPCM, 
the  second two  terms in (B.37)  go to zero. Based on  the  ex- and DM quantizers,”  Proc.  IEEE, vol. 62,  pp.  611-632, May 

1974. 
perimental  evidence for the MA method in Section Iv and [ 121 J. Makhoul,  “Linear  prediction:  a tutorial review,” Proc.  IEEE, 
from (B.28), it is anticipated  that  the second two terms in vol. 63,  pp.  561-580, May 1974. 
(B.37) always cancel, approximately giving [ 131 J. B. Allen,  “Short-term  spectral  analysis  and  synthesis  and  modi- 

fication by discrete  Fourier  transform,” ZEEE Trans. Acoust., 
Speech,  Signal  Processing, vol.  ASSP-25, pp.  235-238, June 

[14] M. Schwartz  and L. Shaw,  Signal Processing: Discrete  Spectral 
Analysis, Detection,  and Estimation. New York: McGraw-Hill, 

Thus, we expect  that  the Q’ measure has the same theoretical 1975,  p. 278. 
expected value  as the Q measure  for  white  noise in (65). [15] G. M. Jenkins  and D. G. Watts,  Spectral  Analysis and Its Appli- 

cations. San Francisco:  Holden-Day,  1968. 
[ 161 R. B. Blackman  and  J. W. Tukey,  The  Measurement of Power 

Spectra. New York:  Dover,  1958. 
The  authors gratefully acknowledge  the  guidance  and  help [ 171 J. B. Allen and L. R. Rabiner, “A unified  approach  to  short-time 

Fourier  analysis  and  synthesis,”  Proc. ZEEE,  vol. 65,  pp.  1558- 
1564, Nov. 1977. 

ut# = @xe - $:e A 6 x e  

os 
150-56, M a .  1960. 

applications,”  Proc. ZEEE,  vol. 63,  pp.  1692-1716, Dec.  1975. 

$4, $xe = RNU; u,’ 1583-1597,Nov.  1976. 

w ~ u $ J , ’  t (G - 1) Nuiu:. (B .3 6) 
V O ~ .  46, pp.  2179-2208, NOV. 1967. 

vol. 46, no. 3, pp. 497-51 1,1967. 

Q r ~ l O l o s [ - + ( ~ : - ~  NU: prediction V O ~ .  COM-22, and  pp.  coding  1789-1796,  of  speech  NOV. signals,” 1974. ZEEE Trans. Comm., 

Q’ w 10 log [$ $1. 1977. 

ACKNOWLEDGMENT 

provided by Dr. M. Sondhi in investigating several of the 
analytical problems discussed in the paper.  In  addition, ~ 1 8 1  M. M. Sandhi, private  communication. 
Dr.  D.  Mitra  and  Dr. S. Levinson provided  consulation  on [19] G. W. Stewart,  Introduction fo Matrix  Computations. New 
Some Of the in Appendix ‘I Of this The authors [20] R. E. Crochiere, L.  R. Rabiner, N. S. Jayant, and J. M. Tribolet, 
also  wish to  thank Dr. J. Tribolet for helpful  comments  on “A study of objective  measures for speech  waveform  coders,”  in 
the  manuscript. Proc.  Zurich  Seminar on Comm., Mar. 1978, pp.  Hl.1-H1.7. 

York:  Academic, 1973. 

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2021 at 13:09:49 UTC from IEEE Xplore.  Restrictions apply. 


